
16 The Delphi Magazine Issue 56

Beating The System:
Wrapping The RAS
Services API, Part 2
by Dave Jewell

Well, here we are running
TRASPhoneBookManager under

a combination of Delphi 5 and Win-
dows 2000 and, to my great sur-
prise, everything seems to work
just fine. As I mentioned last
month, I wasn’t able to try out the
code under Windows 2000 before
going to press, one of the problems
being that the modem on that
machine had been taken out by a
lightning strike! If you’ve ever tried
setting up Dial Up Networking on a
Windows 2000 system, you’ll find
that it’s impossible to do so with-
out a working modem, the system
insists on dialling some number to
see what special offers, etc, are
available in your area and it won’t
allow you to create normal
phonebook entries until that’s
been done! Such is life.

With the TRASPhoneBookManager
component sat on a design-time
form under NT or Win2000, you can
point the PhoneBookFileName at a
valid phonebook and the other
properties of the component will
instantly change to reflect the con-
tents of the file. One minor over-
sight is that with last month’s code
it was impossible to point the
PhoneBookFileName at a valid
phonebook and subsequently set
the property back to an empty

string in order to reference the
default phonebook. This has been
fixed in this month’s code, which is
on the disk as always.

As promised last month, we’re
going to continue enhancing the
phonebook component and pre-
senting a few other goodies, but
first...

Time For A Little Anarchy
One of the things I wanted to do
during this exploration of the RAS
subsystem was come up with a
component that gives you the list
of country names and dialling
codes. In order to do this, you have
to issue a call to RasGetCountryInfo.
If you examine the MSDN documen-
tation relating to this call, you’ll
see that it requires the OSR2
release of Windows 95 or better,
and on NT it needs version 4.0 or
later. Moreover, you’ll notice that
the documentation makes fre-
quent reference to TAPI because,
as you’re probably aware, RAS is
itself built on top of TAPI,
Microsoft’s Telephony API. The
RasGetCountryInfo call is certainly
better designed than the Ras-
EnumEntries routine that we looked
at last time, because it gives you
country information one item at a
time, rather than requiring the

client to provide an
enormous buffer in

which to dump everything. Never-
theless, I decided to indulge in a
little bra-burning anarchy and ‘hit
the metal’ directly, bypassing RAS
and TAPI altogether.

This disgraceful behaviour was
prompted through spending some
time sleuthing around in the
system registry and discovering
that Windows 2000 and Windows
98 use exactly the same registry
location in which to store the
country list. Nah. I just couldn’t
resist. To see the country list
under Windows 9x and NT, check
out the following registry location
using RegEdit:

HKEY_LOCAL_MACHINE\SOFTWARE\
Microsoft\Windows\
CurrentVersion\Telephony\
Country List

You’ll notice there’s a string value,
CountryListVersion, which has the
value 25 under Windows 2000 and
12 under NT. Despite this, the
actual format of each entry
appears to be identical, and my
code will work quite happily under
both platforms. The code for the
new country list component,
TRASCountryList, is given in Listing
1. As you can see, it’s not based on
the TRASBaseComponent base class
that I presented last month. That’s
because, since it doesn’t use the
RAS API, it doesn’t have to concern
itself with loading RAS DLLs,
ensuring that specific routines
exist in the various DLLs and so
forth. Life is so much simpler when
you leave Microsoft APIs behind.
‘Nuff said J.

As you’ll see from the code, the
component stores the list of avail-
able country names in the Coun-
tries property, which is a string
list. This property is populated by
calling Refresh from the control’s
constructor. The Refresh routine is
public so that you can call it for
yourself if it’s been some time
since you created the control, but
in practice I’m not aware of
anything that’s likely to modify
TAPI’s list of countries. Things can
sometimes get a bit volatile in the
Balkans, but Microsoft haven’t yet
built a real-time country list
update facility into Windows.

➤ Figure 1:
The deeply patriotic
TRASCountryList
component sorts
the country list
alphabetically,
rather than by
dialling code, which
has an interesting
effect on the state
of play.

April 2000 The Delphi Magazine 17

The CountryName property stores
the currently ‘selected’ country. If
you try and set this property to
something that isn’t in the list of
country names, you’ll be politely
ignored. Contrariwise, when you
do set the property to a different
country, the corresponding Count-
ryID and CountryDialCode proper-
ties will be automatically updated.

So what’s all that about then?
Basically, every country known to
TAPI has a unique country ID.
However, it’s possible for more
than one country to share the same
dialling code. In other words,
there’s a potential one to many
relationship when mapping from
dialling code to country and coun-
try ID. Typically, the dialling code
is the same as the country ID, but it
doesn’t have to be. Thus, for exam-
ple, the United Kingdom has an

international dialling code of 44,
and also has a unique country ID of
44. Russia, likewise, has a dialling
code of 7 and a country ID of 7.
However, this same dialling code is
shared with Kazakhstan (country
ID 705) and with Tajikistan (coun-
try ID 708). For these reasons, you
can set a new value for the
CountryID property because this is
an unambiguous operation, but
you’re not allowed to set a new
value for the CountryDialCode prop-
erty because several different
countries might potentially map to
the same dial code.

With these deliberations out of
the way, the code itself is quite
straightforward. The Refresh
method creates a TRegistry object
and uses the GetKeyNames method
to retrieve the list of all currently
defined country IDs from the
aforementioned registry location.
It then steps through the list

retrieving the actual name of each
country which is then added to the
fCountries list. In order to avoid
having to re-read the registry later,
the code also obtains the dialling
code from the registry and packs it
into the Objects array of the string
list, alongside the country ID.
You’ll also notice that I decided to
sort the list of country names
alphabetically, which places the
United States into its rightful place
just after the United Kingdom (see
Figure 1). Ooops, did I say that...
As a final bit of unashamed
patriotism, the TRASCountryList.
Create constructor sets the coun-
try name property to the United
Kingdom by default.

The SetCountryName and SetCoun-
tryID property ‘setters’ are both
very simple. The former uses the
passed country name to obtain the
corresponding index into the
country name list, using this

unit RASCountryList;
interface
uses
Windows, Messages, SysUtils, Classes, Graphics,
Controls, Forms, Dialogs;

type
TRASCountryList = class (TComponent)
private
fCountries, fDummy1: TStrings;
fCountryName: String;
fCountryDialCode, fCountryID, fDummy2: Integer;
procedure SetCountryID (Value: Integer);
procedure SetCountryName (const Value: String);

protected
public
constructor Create (AOwner: TComponent); override;
destructor Destroy; override;
procedure Refresh;

published
property Countries: TStrings read fCountries
write fDummy1 stored False;

property CountryName: String read fCountryName
write SetCountryName;

property CountryDialCode: Integer
read fCountryDialCode write fDummy2;

property CountryID: Integer
read fCountryID write SetCountryID;

end;
procedure Register;
implementation
uses

Registry;
constructor TRASCountryList.Create (AOwner: TComponent);
begin
Inherited Create (AOwner);
fCountries := TStringList.Create;
Refresh;
// Why should the US have everything it's way? :-)
SetCountryName ('United Kingdom');

end;
destructor TRASCountryList.Destroy;
begin
fCountries.Free;
Inherited Destroy;

end;
procedure TRASCountryList.Refresh;
const
CListReg = '\SOFTWARE\Microsoft\Windows\CurrentVersion\'+

'Telephony\Country List';
var
Idx: Integer;
Reg: TRegistry;
ObjectData: Integer;
IDNames: TStringList;

begin
Reg := TRegistry.Create;

try
Reg.RootKey := hKey_Local_Machine;
if Reg.OpenKey (CListReg, False) then begin
fCountries.Clear;
// Set Sorted = False for speed....
TStringList (fCountries).Sorted := False;
IDNames := TStringList.Create;
try
Reg.GetKeyNames (IDNames);
for Idx := 0 to IDNames.Count - 1 do
if Reg.OpenKey(CListReg + '\' + IDNames[Idx],
False) then begin
ObjectData :=
MakeLong(Reg.ReadInteger('CountryCode'),
StrToInt(IDNames[Idx]));

fCountries.AddObject(Reg.ReadString('Name'),
TObject(ObjectData));

end;
finally
IDNames.Free;
TStringList(fCountries).Sorted := True;

end;
end;

finally
Reg.Free;

end;
end;
procedure TRASCountryList.SetCountryName(
const Value: String);

var
Idx: Integer;

begin
Idx := fCountries.IndexOf (Value);
if Idx <> -1 then begin
fCountryName := fCountries [Idx];
fCountryDialCode :=
Integer (fCountries.Objects [Idx]) and $ffff;

fCountryID := Integer (fCountries.Objects [Idx]) shr 16;
end;

end;
procedure TRASCountryList.SetCountryID (Value: Integer);
var
Idx: Integer;

begin
for Idx := 0 to fCountries.Count - 1 do
if Value = Integer (fCountries.Objects [Idx]) shr 16
then begin
SetCountryName (fCountries [Idx]);
Exit;

end;
end;
procedure Register;
begin
RegisterComponents ('DelphiMag', [TRASCountryList]);

end;
end.

➤ Listing 1

18 The Delphi Magazine Issue 56

information to retrieve the
‘packed’ country ID and dial codes
from the Objects array. Similarly,
the SetCountryID routine iterates
through the string list until it finds
a matching country ID, whereupon
it calls SetCountryName to do the
business.

Well, so much for the TRAS-
CountryList component. Before
someone writes to complain about
me riding rough-shod over
Microsoft’s APIs, let me just point
out that the name of this column is
Beating the System! To me, it seems
pointless to waste time mucking
around with Microsoft’s cumber-
some APIs when all we’re actually
doing is retrieving a simple list of
values from the registry. In order
to obtain the same information in
the official manner, the RAS code
has to call the lineGetCountry rou-
tine (part of the TAPI API) which
calls... well, you get the idea. If
Microsoft were to properly docu-
ment the way in which TAPI, RAS,
etc, use the registry, then much of
this nonsense could be eliminated.
Harrumph!

A RAS Demo
At this point, I decided that it was
time to build a testbed program for
the components built so far. I also
decided to rationalise things some-
what, and so I renamed last
month’s RASControls.Pas file to
RASPhoneBook.Pas, placing the
low-level ancestor code into
RASBase.Pas.

You can see the Dial Codes page
of the testbed program in Figure 2.
While browsing through the list of
countries, I was intrigued to find an
entry marked ‘Federated States of
Micronesia’. Micronesia? Hmmm...
this has to be one of Bill’s little
jokes, right? Well, I tracked down
the FSM on the Internet and it’s for
real. I guess you learn something
new every day [Even though our
esteemed columnist didn’t know
you existed, our mailing house does,
and all you residents of the FSM are
very welcome indeed to become
subscribers! Ed].

You can see the phonebook page
of the testbed in Figure 3. For rea-
sons that should be somewhat
obvious, I’ve removed my pass-
words from this illustration. I trust
you all implicitly, but...

As I promised last time, I wanted
to enhance the phonebook compo-
nent by making it possible to
modify some important fields,
such as username, password, etc,
rather than just implementing the
component as a read-only
browser. Inevitably, this requires a
certain amount of caution, espe-
cially for folks like me whose liveli-
hood depends on their internet
connection! The bottom line is that
if you want to play around with the
existing code, you should back up
your current phonebook entries

before experimenting. On NT, this
is easy, because you can simply
make a backup copy of the .PBK file
that you’re going to be playing
around with. Under Windows
95/98, you should use something
like RegEdit to export the registry
sub-tree corresponding to your
current phonebook, or at the very
least write down the username and
password settings corresponding
to each of your ISP accounts.

Last month, we discussed the
TRASDialParams and TRASDial-
ParamsNT4_2000 data structures
whose contents are retrieved via a
call to the RASGetEntryDialParams
routine. You may have noticed
that in last month’s code I sepa-
rated out the actual call to this rou-
tine into a method called
InternalGetDialParameters rather
than placing it inside the
GetDialParameters routine. I did
this in preparation for this month’s
instalment because it makes it
possible for the new SetDial-
Parameters routine (see Listing 2)
to easily retrieve the current state
of play, alter only the field that
needs to be changed and then
write the record back via RASSet-
EntryDialParams. When you are
working with complicated Micro-
soft data structures, it’s best to do
things this way rather than trying
to build a whole new data struc-
ture from scratch, which would be
tedious, error-prone and probably
require a call to RASGetEntry-
DialParams at some point anyway.

As with last month’s code, it’s
easy to implement both UserName

➤ Figure 2: Here's the
TRASCountryList component
installed as part of the
testbed program included on
this month's disk.

➤ Figure 3: And here are the
phonebook entries on my
Windows 2000 machine,
courtesy of the phonebook
component. Passwords and
user names have been hidden
to protect the innocent.

20 The Delphi Magazine Issue 56

and Password as writeable proper-
ties, simply by pointing the ‘getter’
clause of their property declara-
tions at the new SetDialParameters
routine. This is also shown in List-
ing 2, which is a sort of ‘delta’ of
last month’s code. As ever, com-
plete source code is included on
the disk.

There are few surprises in the
actual implementation of SetDial-
Parameters. There’s an explicit
check to make sure that an empty
string isn’t passed as the user-
name. According to the Microsoft
documentation, setting an empty
username would be disallowed
within RASSetEntryDialParams, but
maybe it’s better to make doubly
sure. Similarly, if you set the pass-
word to an empty string, this will
cause the RemovePassword flag to be
set on the call into the RAS API.

Note: If you do remove a pass-
word in this way, then TRASPhone-
BookManager will then report the
password as —-not available—-
because of the code in GetDial-
Parameters. This may or may not be
what you want. If it isn’t, then it
might be better to modify
GetDialParameters to simply return
an empty string.

In order to alter the telephone
number, device name, etc, we need
to use the RASSetEntryProperties
routine which corresponds to the
RASGetEntryProperties API which

we looked at last time. Both of
these routines use the TRASEntry
data structure which is compli-
cated by the fact that it can be fol-
lowed by an arbitrary number of
alternative phone numbers format-
ted as C-style strings. Here again,
I’ve adopted the strategy of read-
ing the entire data structure into
memory (a 10,000 byte buffer
ought to be big enough!) just modi-
fying the wanted fields, and then
writing the thing back out again via
RASSetEntryProperties.

Listing 2 includes the source
code for the new SetEntryProp-
erties routine, which I’ve tied into
the PhoneNumber, DeviceType and
DeviceName properties using the
revised property declarations in
Listing 2. You’ll notice that the
code allocates a 10,000 byte buffer
(yes, I know you’re not likely to
have that many alternative phone
numbers, but you never know
when Microsoft are going to add
something else to the end of the
structure) and passes the buffer
size to the new InternalSetProp-
erties routine. This returns the
current state of play, including any
alternative phone number informa-
tion, and the code then updates the
requisite field of the data structure
before calling RASSetEntryProp-
erties.

You might perhaps raise an
eyebrow at the fact that I don’t
perform any input parameter vali-
dation here. If you try specifying a

non-existent device name or
device type, the RASSetEntryProp-
erties routine is smart enough to
politely ignore you. Try fiddling
with these property values in the
Object Inspector and you’ll see
them snap back to their previous
values if you enter something
invalid. Currently, TRASPhone-
BookManager allows you to specify
an empty phone number.

One thing you might wish to do
is create an entirely new phone-
book entry programmatically, as
opposed to calling the Add func-
tion, which simply brings up
Microsoft’s dialog. Again, this is
pretty easy. You could do it the
hard way by filling in a TRASEntry
data structure from scratch, but a
simpler approach is to use RASGet-
EntryProperties to retrieve the
data structure of an existing phone-
book entry, edit the phone number
as appropriate, and then write the
data structure back with RASSet-
EntryProperties, using an entry
name that doesn’t already exist.
This will create a new entry in the
phonebook. Obviously, this is only
appropriate for cases where
there’s already at least one exist-
ing entry, and when you’re running
on a system that has only one
RAS-compatible device.

A RAS Device Manager
Did I mention devices? We’ve got a
drop-in component for examining
and modifying phonebook entries,

property UserName: String index 0 read GetDialParameters
write SetDialParameters stored False;

property Password: String index 1 read GetDialParameters
write SetDialParameters stored False;

property PhoneNumber: String index 0 read GetEntryProperties
write SetEntryProperties stored False;

property DeviceType: String index 1 read GetEntryProperties
write SetEntryProperties stored False;

property DeviceName: String index 2 read GetEntryProperties
write SetEntryProperties stored False;

procedure TRASPhoneBookManager.SetDialParameters (Index:
Integer; const Value: String);

var
GotPassword: Bool;
Params: TRasDialParamsNT4_2000;
RasSetEntryDialParams: function(Phonebook: PChar;
var RasDialParams: TRasDialParamsNT4_2000;
RemovePassword: Bool): Integer; stdcall;

begin
if InternalGetDialParameters (Params, GotPassword) > 0
then begin
// Can't set username to an empty string.
if (Index = 0) and (Value = '') then
Exit;

if Index = 0 then
StrPCopy (Params.UserName, Value)

else
StrPCopy (Params.PassWord, Value);

RasSetEntryDialParams :=
GetProc('RasSetEntryDialParamsA');

if Assigned (RasSetEntryDialParams) then
CallProc (RasSetEntryDialParams(PhoneBookNameAsPChar,

Params, (Index = 1) and (Value = '')));
end;

end;
procedure TRASPhoneBookManager.SetEntryProperties (Index:
Integer; const Value: String);

var
Props: TRASEntry;
EntrySize, DevInfoSize: Integer;
Buffer: array [0..10000] of Char absolute Props;
RasSetEntryProperties: function(
Phonebook, EntryName: PChar; var Entry: TRASEntry;
var EntrySize: Integer; DevInfo: Pointer;
var DevInfoSize: Integer): Integer; stdcall;

begin
EntrySize :=
InternalGetEntryProperties(Props, sizeof(Buffer));

if EntrySize > 0 then begin
case Index of
0 : StrPCopy(Props.LocalPhoneNumber, Value);
1 : StrPCopy(Props.DeviceType, Value);
2 : StrPCopy(Props.DeviceName, Value);

end;
DevInfoSize := 0;
RasSetEntryProperties :=
GetProc('RasSetEntryPropertiesA');

if Assigned (RasSetEntryProperties) then
CallProc(RasSetEntryProperties(PhoneBookNameAsPChar,
PChar(fEntries[fItemIndex]), Props, EntrySize,
Nil, DevInfoSize));

end;
end;

➤ Listing 2

April 2000 The Delphi Magazine 21

and another for viewing country
list information. How about
another component for displaying
the list of RAS- compatible devices
on a system?

The TRASDeviceManager is the
simplest RAS component pre-
sented so far, the code for which is
shown in Listing 3. This compo-
nent merely ‘exports’ a couple of
string list properties, DeviceNames
and DeviceTypes, which list the
name of each RAS-compatible
device and its corresponding type.
You can see the sort of information
that’s retrieved by referring to
Figure 4.

Here again, I was sorely tempted
to bypass the RAS API altogether
and simply retrieve the informa-
tion directly from the registry, but I
decided to be a good boy this time
round! In this case, we don’t have
to contend with variable-sized data
structures and buffers that may or
may not be followed by arbitrary
amounts of other stuff so, in real-
ity, this is one of the simpler API
calls to work with.

As with the phonebook compo-
nent, TRASDeviceManager is derived
from TRASBaseComponent. The con-
structor and destructor simply
manage creation and deletion of
the two internal string lists, and all

the real work is done inside the
Refresh routine. This simply
allocates a (very!) generous sized
buffer, and calls the RasEnumDevices
API call to fill the buffer with a
series of TRASDevInfo data
structures, the layout of which can
be seen from the code listing. At
the same time, RasEnumDevices
returns an integer which indicates
how many device info structures
have been copied to the buffer.

Using this information, we can
simply loop through the returned
data, extracting the device type
and device name information and
storing it in our string lists. This
particular call exists on NT 4.0 or
later, and on Windows 95 OSR2 or
later, but as ever, the Refresh
method is written in such a way as
to fail gracefully if the call isn’t
implemented.

Since writing last month’s code,
it occured to me that a better

implementation of the Available
property in TRASBaseComponent
would be to write it in such a way
as to call a virtual abstract
method, GetAvailable. This could
then be overridden in derived
classes to provide a more accurate
indication of whether or not a ser-
vice is available. In the current
implementation, we are setting
Available to True if the RAS DLL is
present, whereas we should really
be setting it according to whether
or not a specific RAS API is avail-
able. This enhancement is left as
an exercise for the reader!

unit RASDevices;
interface
uses
Windows, Messages, SysUtils, Classes, Graphics,
Controls, Forms, Dialogs, RASBase;

type
TRASDeviceManager = class (TRASBaseComponent)
private
fDeviceNames, fDeviceTypes, fDummy2: TStrings;

protected
public
constructor Create (AOwner: TComponent); override;
destructor Destroy; override;
procedure Refresh;

published
property DeviceNames: TStrings read fDeviceNames
write fDummy2 stored False;

property DeviceTypes: TStrings read fDeviceTypes
write fDummy2 stored False;

end;
procedure Register;
implementation
constructor TRASDeviceManager.Create (AOwner: TComponent);
begin
Inherited Create (AOwner);
fDeviceNames := TStringList.Create;
fDeviceTypes := TStringList.Create;
Refresh;

end;
destructor TRASDeviceManager.Destroy;
begin
fDeviceNames.Free;
fDeviceTypes.Free;
Inherited;

end;

procedure TRASDeviceManager.Refresh;
type
TRasDevInfo = record
dwSize: DWORD;
DeviceType: array [0..16] of Char;
DeviceName: array [0..128] of Char;
end;

var
CurDev: ^TRasDevInfo;
Buffer: array [0..10000] of Char;
Idx, BufSize, NumDevices: Integer;
RasEnumDevices: function (Buffer: PChar; var BufSize,
NumDevices: Integer): Integer; stdcall;

begin
if Available then begin
// First off, refresh the entries list
fDeviceNames.Clear;
fDeviceTypes.Clear;
RasEnumDevices := GetProc ('RasEnumDevicesA');
if Assigned (RasEnumDevices) then begin
CurDev := @Buffer;
CurDev^.dwSize := sizeof (TRasDevInfo);
BufSize := sizeof (Buffer);
if CallProc(RasEnumDevices(Buffer, BufSize,
NumDevices)) then
for Idx := 0 to NumDevices - 1 do begin
fDeviceTypes.Add (CurDev^.DeviceType);
fDeviceNames.Add (CurDev^.DeviceName);
Inc (CurDev);

end;
end;

end;
end;
procedure Register;
begin
RegisterComponents ('DelphiMag', [TRASDeviceManager]);

end;

➤ Listing 3

➤ Figure 4: Under Windows
2000, quite a generous
array of RAS-compatible
devices are available.
Under Windows 95 or 98,
you will typically only see
your modem listed on a
standalone machine.

24 The Delphi Magazine Issue 56

The Connection Manager
Figure 5 shows my connection
manager component, TRASConnect-
ionManager running as part of the
RAS testbed program. The imple-
mentation of this component
involves some extra issues in addi-
tion to what we’ve discussed so far.
First and foremost, the status of a
connection can obviously change
‘under the feet’ of an application,
whereas things like country lists
and available devices are far less
‘volatile’. Thus, in Figure 5, you can
sit in the testbed program and
watch the status of a connection
change as the user gets authenti-
cated and the connection is finally
established. This is a deeply cool
feature (in my humble opinion!)
and I’m quite pleased with it.

My original intention in imple-
menting the connection manager
was to make use of the Ras-
ConnectionNotification routine.
This makes use of a kernel-level
‘event object’ and requires that the
calling thread block on one of the
special wait functions such as
WaitForSingleObject, and so on.
This, in turn, requires that a thread
is dedicated to the business of
waiting for a connection status
change to take place. You’ll
remember that this is exactly the
technique that I used a few months
back when implementing my
TFileSystem class.

Although this approach works
well, and isn’t especially difficult to
do, there’s a fundamental problem
in that the RasConnectionNotif-
ication routine is only imple-
mented under NT 4.0 (or later) and
Windows 98. In other words, it
doesn’t exist under Windows 95 at
all. Now, I can live with a RAS API
routine that requires W95 OSR2,
but I think that cutting Windows 95
out of the equation altogether is far
too rigorous a requirement.
Speaking personally, I still know an
awful lot of people using Windows
95, and I think it would be fool-
hardy to write code that won’t run
on this platform, especially when
there are various ways around the
difficulty. In the end, I decided to
use a standard Windows timer to
provide a periodic update of the
connection status. In the code

presented here, I’ve set this to one
second, which represents a fairly
leisurely update, but you can
obviously change this if you want.

The code for the connection
manager is given in Listing 4. As
you can see, I create an ordinary
timer by calling SetTimer in the
component constructor, storing
the timer identifier into fTimer. For
some reason, even seasoned Win-
dows programmers seem to think
that you can’t have a Windows-
level timer unless you’ve created a
window to receive wm_Timer mes-
sages, and that’s simply not true.
Even Borland’s own developers
don’t seem to realise that no
window is necessary. Don’t believe
me? If you take a peek at the
implementation of TTimer (in
EXTCTRLS.PAS) you’ll see that a
hidden window is created specifi-
cally for the purpose of receiving
those timer messages. A careful
reading of the SDK documentation
shows this to be completely unnec-
essary, and the TTimer implementa-
tion would indeed be a lot simpler
without it.

The secret is to specify zero as
the window handle, and supply a
pointer to a callback routine that’s
called directly by the kernel, rather
than posting wm_Timer messages to
your application. In this case, the
callback routine is named Timer-
TickProc and, as with any API-level
callback, this must be declared
using stdcall.

There is one fly in the ointment,
this being that the Windows API
doesn’t make provision for passing
an application-supplied 32-bit
value to the callback routine, thus
making it impossible to recover the
value of Self from within the call-
back. The documentation states
that if the supplied window handle

is zero, SetTimer ignores the sup-
plied timer identifier parameter,
which is certainly true. However, if
Microsoft had had their brain cells
engaged when they designed
SetTimer, the timer identifier
would have been passed as the
third parameter to the callback
routine.

Because we haven’t got access
to Self, we have to cheat and use a
global variable (pause for screams
of outrage!) which I’ve called
InstanceHack. This global allows us
to recover the instance handle for
our connection manager, but it
does mean that we can only have
one instance of TRASConnection-
Manager at a time. In their defence,
Borland might argue that it’s
because of such problems that
they decided to implement TTimer
with a hidden window. I guess
there’s some truth in that, but it
would have been far more efficient
(in terms of system resource
usage) to use a single window
shared by all TTimer instances
rather than giving each timer its
own window.

Be that as it may, you’ll see that
the component constructor starts
off by calling the Refresh method,
and it’s this method which also
gets called on each timer tick. Even
though the connection manager
makes a ‘reality check’ every
second, the application doesn’t
really want to know unless some
status change has actually taken

➤ Figure 5: The connection
manager component keeps
track of all current
connections, and will
automatically send an update
event to the application
whenever the status of any of
the connections is changed.

April 2000 The Delphi Magazine 25

place. Consequently, I’ve added an
OnStatusChange event handler
which is triggered whenever the

component detects that the state
of play has changed.

The connection manager can
support multiple simultaneous
connections and so, for each

connection in existence, the
phone-book name of the connec-
tion can be obtained from the
ConnectionNames property, and
the corresponding status from

unit RASConnection;
interface
uses
Windows, Messages, SysUtils, Classes, Graphics,
Controls, Forms, Dialogs, RASBase;

type
TRASConnectionManager = class (TRASBaseComponent)
private
fTimer: Integer;
fConnectionNames, fDummy1: TStrings;
fOnStatusChange: TNotifyEvent;
function GetStatus (Index: Integer): String;
function StatusChanged (NewStatus: TStringList):
Boolean;

protected
public
constructor Create (AOwner: TComponent); override;
destructor Destroy; override;
procedure Refresh;
property Status [Index: Integer]: String read GetStatus;

published
property ConnectionNames: TStrings read fConnectionNames
write fDummy1 stored False;

property OnStatusChange: TNotifyEvent
read fOnStatusChange write fOnStatusChange;

end;
procedure Register;
implementation
var
InstanceHack: TRASConnectionManager;

procedure TimerTickProc(
Wnd: hWnd; Msg, Event, Time: Integer); stdcall;

begin
InstanceHack.Refresh;

end;
function ConStateToString(State: Integer): String;
begin
case State of
$0000: Result := 'Com Port Opening';
$0001: Result := 'Com Port Opened';
$0002: Result := 'Connecting Device';
$0003: Result := 'Device Connected';
$0004: Result := 'All Connected';
$0005: Result := 'Starting Authenticate';
$0006: Result := 'Authentication Event';
$0007: Result := 'Retrying Authentication';
$0008: Result := 'Callback number requested';
$0009: Result := 'Password change request';
$000A: Result := 'Projection Starting';
$000B: Result := 'Calculating Link Speed';
$000C: Result := 'Acknowledging Authentication Request';
$000D: Result := 'Starting Reauthentication';
$000E: Result := 'Successfully Authenticated';
$000F: Result := 'Disconnecting for callback';
$0010: Result := 'Resetting modem for callback';
$0011: Result := 'Waiting for callback';
$0012: Result := 'Projection complete';
$0013: Result := 'Authenticating user';
$0014: Result := 'Callback complete';
$0015: Result := 'Logging onto network';
$0016: Result := 'Subentry connected';
$0017: Result := 'Subentry disconnected';
$1000: Result := 'Terminal State';
$1001: Result := 'Retrying Authentication';
$1002: Result := 'Callback set by user';
$1003: Result := 'Password has expired';
$1004: Result := 'Paused for EAPUI';
$2000: Result := 'Successful connection';
$2001: Result := 'Failed connection';
else Result := 'Unknown';

end;
end;
constructor TRASConnectionManager.Create(
AOwner: TComponent);

begin
// Yes, it's dirty, but it's also quick. ;-)
if InstanceHack <> Nil then
Exception.Create(
'Only one TRASConnectionManager allowed');

Inherited Create(AOwner);
InstanceHack := Self;
fConnectionNames := TStringList.Create;
Refresh;
fTimer := SetTimer(0, 0, 1000, @TimerTickProc);

end;
destructor TRASConnectionManager.Destroy;
begin
if fTimer <> 0 then
KillTimer(0, fTimer);

fConnectionNames.Free;

Inherited;
InstanceHack := Nil;

end;
function TRASConnectionManager.StatusChanged(
NewStatus: TStringList): Boolean;

var Idx: Integer;
begin
Result := fConnectionNames.Count <> NewStatus.Count;
if not Result then begin
Result := True;
for Idx := 0 to fConnectionNames.Count - 1 do begin
if fConnectionNames [Idx] <> NewStatus [Idx] then
Exit;

if fConnectionNames.Objects[Idx] <>
NewStatus.Objects[Idx] then
Exit;

end;
Result := False;

end;
end;
procedure TRASConnectionManager.Refresh;
type
TRasConn = record
dwSize: DWord;
hConn: THandle;
EntryName: array [0..20] of Char;

end;
TRasConStatus = record
dwSize: DWord;
ConState: Integer;
Error: Integer;
DeviceType: array [0..16] of Char;
DeviceName: array [0..32] of Char;

end;
var
CurCon: ^TRasConn;
NewStatus: TStringList;
Status: TRasConStatus;
Buffer: array [0..10000] of Char;
Idx, BufSize, NumConnections: Integer;
RasEnumConnections: function(Buffer: PChar; var BufSize,
NumConnections: Integer): Integer; stdcall;

RasGetConnectStatus: function(hConn: THandle; var Status:
TRasConStatus): Integer; stdcall;

begin
if Available then begin
RasEnumConnections := GetProc('RasEnumConnectionsA');
RasGetConnectStatus := GetProc('RasGetConnectStatusA');
if Assigned (RasEnumConnections) and
Assigned(RasGetConnectStatus) then begin
NewStatus := TStringList.Create;
try
CurCon := @Buffer;
CurCon^.dwSize := sizeof (TRasConn);
BufSize := sizeof (Buffer);
if CallProc (RasEnumConnections (Buffer, BufSize,
NumConnections)) then
for Idx := 0 to NumConnections - 1 do begin
Status.dwSize := sizeof (Status);
if CallProc(RasGetConnectStatus(
CurCon^.hConn, Status)) then
NewStatus.AddObject(CurCon^.EntryName,
TObject(Status.ConState));

Inc (CurCon);
end;
// Now see if anything has changed
if StatusChanged (NewStatus) then begin
fConnectionNames.Assign (NewStatus);
if Assigned (OnStatusChange) then
OnStatusChange(Self);

end;
finally
NewStatus.Free;

end;
end;

end;
end;
function TRASConnectionManager.GetStatus(
Index: Integer): String;

begin
Result := '';
if Index < fConnectionNames.Count then
Result := ConStateToString(
Integer(fConnectionNames.Objects[Index]));

end;
procedure Register;
begin
RegisterComponents('DelphiMag', [TRASConnectionManager]);

end;
end.

➤ Listing 4

26 The Delphi Magazine Issue 56

the Status property array. When a
connection terminates, it automat-
ically disappears from the list of
available connections on the next
timer tick.

The real ‘guts’ of the connection
manager are contained within the
Refresh routine which actually
requires two distinct RAS routines.
First, it’s necessary to call
RASEnumConnections, which enu-
merates all the current connec-
tions that RAS knows about. In
Microsoft’s time-honoured fash-
ion, this routine uses a data struc-
ture, TRasConn, which comes in no
less than four different flavours
according to which platform
you’re running on and whether it’s
a leap year or not (OK, I lied about
that last part).

On the positive side, Microsoft
have at least implemented the cor-
rect ‘fallback’ behaviour for the
RASEnumConnections routine. In
other words, if you set up the
dwSize field so as to request an
early version of the data structure,
later versions of the code will
recognise the format of data struc-
ture that’s required, and return
only the fields that the older code
expects. This is great news as far as
we’re concerned, because quite
frankly we don’t give a monkey’s
armpit what device type, device
name and phonebook path are
being used for the connection. In a
sense, all this information is redun-
dant anyway, because knowing the
phonebook entry name, we could
determine everything else from the
phonebook.

Accordingly, the TRASConnect-
ionManager.Refresh method asks
for (and gets) the earliest possible
version of TRasConn, thereby elimi-
nating most of the deeply messy
code that would otherwise ensue.
The returned list of current con-
nections also includes a set of con-
nection handles in the hConn field of
the data structure. These are
important because we need them
in order to get the current status of
each connection. Armed with a
connection handle, we call the
RASGetConnectStatus to obtain the
current status of a particular con-
nection. Notice that the
TRASConStatus once again tries to

furnish us with information that we
know already (the device type and
device name being used for the
connection) but cunningly
encodes the much more interest-
ing connection status as an integer.

In order to determine whether
things have changed since the last
timer tick, the phonebook names
and corresponding connection
statuses (stati?) are stored in a
TStringList object which is passed
to the StatusChanged function. This
checks the two string lists to deter-
mine whether anything has
changed. If it has, the OnStatus-
Change event handler is fired. The
code presented here is relatively
unsophisticated, but with a little
more work you could pass all the
pertinent information back
through the OnStatusChange event
handler, such as the name of the
phonebook entry for which the
status has changed, and the new
status as a descriptive string.

In order to convert Microsoft’s
status codes into something mean-
ingful, I wrote the ConStateToString
function. This is called by the
GetStatus method which imple-
ments the Status property array.
To the casual eye, many of these
description strings look vaguely
similar to one another, but one
may as well provide a string for all
the status codes currently defined.
If you write an application which
makes use of TRASConnection-
Manager (or something similar) I’d
strongly caution you against writ-
ing code which expects to see cer-
tain specific status codes in a
certain order. For example,
depending on the timer tick fre-
quency you use, you might miss a
certain status transition and then
lock up your application, waiting
for something that’s already hap-
pened. Also, comparing a Windows
2000 and a Windows 98 system, I’ve
noticed that you see things on one
platform that you might not see on
the other. This is undoubtedly due
to differences in the RAS internal
implementation on the different
platforms.

Caveats And Conclusions
The only real caveat is that I’ve
tried out the various components

under Windows 98 and Windows
2000, but not under Windows 95.
As discussed elsewhere, I’ve made
a conscious effort to support ‘95,
but I don’t myself have a live
Windows 95 system any more. In
theory, things should work as
advertised, but if you find any Win-
dows 95 related problems, then let
me know and I’ll pass them on.

I don’t doubt that one or two
folks will berate me for a certain
lack of efficiency. After all, when
you update a phonebook entry in
the testbed program, the three
property assignments to UserName,
PhoneNumber and Password each
require the phonebook entry prop-
erties to be read, updated, and
then written out again. Fair
enough, but like I said, it’s much
easier to do things that way than it
is to generate Microsoft’s idiosyn-
cratic data structures from
scratch and besides, editing
phonebook entries isn’t some-
thing your average PC needs to do
hundreds of times a second!

There’s also the issue of ram-
pant ‘featureitis’. If you study the
various RAS data structures in
Microsoft’s specifications, you’ll
see that there’s a huge amount of
extra functionality in there (espe-
cially TRASEntry!) which I haven’t
‘surfaced’ as component proper-
ties. At the end of the day, you’ll
have different ideas about what
level of flexibility you want, I’m just
trying to give you a foundation to
start from.

In a similar vein, you might be
surprised that I haven’t provided
code to encapsulate the important
business of dialling and hanging up
a connection, (ie wrappers for
RASDial and RASHangup). Again, this
is because you’ll probably have
your own ideas about how you
want things to work. Part of my
motivation in creating the connec-
tion manager was to build a utility
that could programmatically moni-
tor connections created by other
applications and periodically warn
if a connection was still present
after a certain time. This is
because I’ve often walked away
from a machine then come back a
few hours later to discover that it’s
still sat there eating away at the

28 The Delphi Magazine Issue 56

phone bill! In terms of dialling,
RASDial will allow you to dial syn-
chronously or asynchronously. In
other words, you can have every-
thing done inside RASDial, with the
routine not returning until the con-
nection is established, or you can
provide a window to which notifi-
cation messages are sent during
the dial process. Unless you have a
requirement to capture each and
every notification message that’s
going, I suspect the easiest option
would be to simply dial asynchr-
onously, passing Application.
Handle as the window to receive
notification messages. Your appli-
cation will then receive (and
ignore) status notifications sent
from RAS, but you’ll be able to keep
track of the current state of play via
the connection manager compo-
nent described earlier.

RAS aside, the aim of these two
articles has been to demonstrate
how to wrap up a Microsoft API in
such a way as to fail gracefully if
the API (or rather, the DLL that
implements the API!) doesn’t exist
on the target machine. By using the

base functionality provided by
TRASBaseComponent, the amount of
logic required in the various
derived classes is greatly reduced.
We don’t care whether a specific
API routine is implemented in
RASAPI32.DLL, or in RNAPH.DLL, it all
just happens automatically. Here
again, the efficiency pundits might
complain but, trust me, GetProc-
Address is very fast.

Finally, I said I’d mention the
mysterious PBK files used by NT to
store phonebook entries. Since last
time, I’ve been playing around with
some real PBK files and, yes, just as
I suspected, these are just plain
ordinary .INI files with a different
file extension. What’s really bizarre
here is the way in which Microsoft
appear to have re-implemented the
various .INI file handing routines
within RASAPI32.DLL. Why not just
use the existing routines? If you
feel like tinkering around with PBK
files, bear in mind that they
don’t actually contain the pass-
words associated with specific
phonebook entries, although Is
suspect those mysterious GUID

entries have something to do with
that!

For reasons of space, the source
code to the testbed program isn’t
listed below, but everything can be
found on this month’s disk.

Dave Jewell is a freelance consul-
tant, programmer and technical
journalist specialising in system-
level Windows and DOS work. He
is Technical Editor of Developers
Review which is also published by
iTec. You can contact Dave at
TechEditor@itecuk.com

	Time For A Little Anarchy
	A RAS Demo
	A RAS Device Manager
	The Connection Manager
	Caveats And Conclusions

